A role for the dystrophin-glycoprotein complex as a transmembrane linker between laminin and actin
نویسندگان
چکیده
The dystrophin-glycoprotein complex was tested for interaction with several components of the extracellular matrix as well as actin. The 156-kD dystrophin-associated glycoprotein (156-kD dystroglycan) specifically bound laminin in a calcium-dependent manner and was inhibited by NaCl (IC50 = 250 mM) but was not affected by 1,000-fold (wt/wt) excesses of lactose, IKVAV, or YIGSR peptides. Laminin binding was inhibited by heparin (IC50 = 100 micrograms/ml), suggesting that one of the heparin-binding domains of laminin is involved in binding dystroglycan while negatively charged oligosaccharide moieties on dystroglycan were found to be necessary for its laminin-binding activity. No interaction between any component of the dystrophin-glycoprotein complex and fibronectin, collagen I, collagen IV, entactin, or heparan sulfate proteoglycan was detected by 125I-protein overlay and/or extracellular matrix protein-Sepharose precipitation. In addition, laminin-Sepharose quantitatively precipitated purified dystrophin-glycoprotein complex, demonstrating that the laminin-binding site is accessible when dystroglycan is associated with the complex. Dystroglycan of nonmuscle tissues also bound laminin. However, the other proteins of the striated muscle dystrophin-glycoprotein complex appear to be absent, antigenically dissimilar or less tightly associated with dystroglycan in nonmuscle tissues. Finally, we show that the dystrophin-glycoprotein complex cosediments with F-actin but does not bind calcium or calmodulin. Our results support a role for the striated muscle dystrophin-glycoprotein complex in linking the actin-based cytoskeleton with the extracellular matrix. Furthermore, our results suggest that dystrophin and dystroglycan may play substantially different functional roles in nonmuscle tissues.
منابع مشابه
Disrupted mechanical stability of the dystrophin-glycoprotein complex causes severe muscular dystrophy in sarcospan transgenic mice.
The dystrophin-glycoprotein complex spans the muscle plasma membrane and provides a mechanical linkage between laminin in the extracellular matrix and actin in the intracellular cytoskeleton. Within the dystrophin-glycoprotein complex, the sarcoglycans and sarcospan constitute a subcomplex of transmembrane proteins that stabilize alpha-dystroglycan, a receptor for laminin and other components o...
متن کاملDystroglycan Versatility
cytoskeleton, thus stabilizing the muscle as it alternately Martin E. Hemler Dana-Farber Cancer Institute contracts and relaxes. In particular, the a-dystroglycan protein binds to the extracellular matrix protein Boston, Massachusetts 02115 laminin-2, while b-dystroglycan spans the membrane and links directly to dystrophin, and other cytoskeletal proteins in the dystrophin family (Figure 1A). T...
متن کاملThe sarcoglycan complex in skeletal muscle.
In skeletal muscle, the dystrophin-associated glycoprotein complex forms a link between the actin cytoskeleton and the extracellular matrix that is critical for muscle integrity. Within this complex resides the sarcoglycan subcomplex, which consists of four transmembrane glycoproteins (alpha-, beta-, gamma-, and delta-sarcoglycan). During assembly, beta-sarcoglycan tightly associates with delta...
متن کاملThe pathobiochemical role of the dystrophin-dystroglycan complex and the Ca2+-handling apparatus in diabetes-related muscle weakness (Review).
Serious diabetic complications affect millions of patients worldwide. Skeletal muscle represents the largest insulin-regulated glucose sink in the body, making insulin resistance and abnormal glucose disposal in muscle fibres a critical aspect of diabetes mellitus. Advances in the biomedical analysis of the molecular mechanisms underlying diabetic complications rely heavily on the study of suit...
متن کاملDystrophin-glycoprotein complex and Ras and Rho GTPase signaling are altered in muscle atrophy.
The dystrophin-glycoprotein complex (DGC) is a sarcolemmal complex whose defects cause muscular dystrophies. The normal function of this complex is not clear. We have proposed that this is a signal transduction complex, signaling normal interactions with matrix laminin, and that the response is normal growth and homeostasis. If so, the complex and its signaling should be altered in other physio...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of Cell Biology
دوره 122 شماره
صفحات -
تاریخ انتشار 1993